[an error occurred while processing this directive]

Complex Numbers Group Exercise 4 - Dividing Complex Numbers

Show That (2 + 3i)) ÷ (3 -3 i)  = -3/18 + 15/18  by stating the justification for each step. The properties used include Multiplication of a Fraction by 1, Combining Like Terms, the Distributive PropertyDivision by a Monomial, and Definition of i 2.
 

STATEMENT JUSTIFICATION
(2 + 3i)/(3 -3i)

= [(2 + 3i)/(3 -3 i)] ● [(3+3i)/(3+3i)]

 =(6 + 6i + 9i + 9i2)/(9 +9i-9i - 9i2)

= (6 + 6i + 9i - 9)/(9 +9i-9i +9)

= (-3 + 15i)/18

= -3/18 + (15/18)i

 

Given

___________________________________

___________________________________
 

___________________________________
 

___________________________________


___________________________________

 

 

[an error occurred while processing this directive]